Survival Secrets to Surviving an Asteroid Collision.Everything You Need to Know About Asteroids and How to Survive an Asteroid Impact. Warning: Asteroids Can Cause Near-Extinction Events.
Also … Emergency Supplies to Survive Asteroids.
Such a collision would destroy most of life on Earth. Any surviving cockroaches would be mighty pleased, however.
Enter Asteroid PHA 4179
“The space spud is PHA (Potentially Hazardous Asteroid) 4179. French scientists discovered the asteroid in 1989 and named it Toutatis after the Gaulish god of Thunder and Destruction. Toutatis’ peculiar shape, wobbly rotation and wacky orbit make it unique among the near-Earth asteroids whizzing around our blue planet. Scientists at NASA’s Jet Propulsion Laboratory in Pasadena, Calif., study these space rocks with radar. [. . .]”Orbit-altering experiences with planets Earth, Mars, Venus and Jupiter, as well as the Sun, make Toutatis consistently inconsistent, passing closer or farther to larger bodies as gravity wills. On its most recent visit, October 31, 2000, Toutatis passed within less than 29 lunar distances of earth (a lunar distance is the average distance from Earth to Moon: 384,400 km). When Toutatis is next in the neighborhood (galactically speaking), on Sept. 29, 2004, it will pass just 4 lunar distances from Earth.
The asteroid will be the brightest it’s ever been and easy to see through binoculars.”The concept of a large meteor like this one eventually breaking through our atmosphere and trashing the Earth is hardly just Hollywood fluff. It’s been surmised by several scientists that an asteroid just like Toutatis struck what is now Mexico about 65 million years ago and effectively ended the dinosaur age in one fell swoop.
Asteroids And Near Earth Orbits
Nor is this a mere tale of bygone days. On March 23, 1989, an asteroid with a kinetic energy of over 1000 one-megaton hydrogen bombs (i.e., about 5,000 times more powerful than the bomb dropped on Hiroshima) was recorded to have passed very close to Earth. Named 1989FC, scientists only discovered the closeness of its pass to the Earth after the fact, during a calculation of the asteroid’s entire orbital path.Then in 1994, the new Spacewatch Camera in Arizona discovered four asteroids that sped by twice as close to us as our nearest neighbor, the Moon.
News of these activities brought what are called Near Earth Objects (NEOs) into the political arena.
What–if anything–are scientists and governments doing about this? Is it that much of a concern, or were those close passes simply freakish accidents, horrible things that–thankfully–almost never happen?
Asteroids Are Like Comets
Asteroids, like comets, are really just chunks of flying debris left over from the formation of the solar system about 4.5 billion years ago. Some are huge; for instance, the potato-shaped asteroid Eros is bigger than the whole District of Colombia.Before you freak out entirely, it must be noted here that the statistics on the chances of an NEO over one kilometer (3,000 feet) long–about the size of the one that probably killed off the dinosaurs–hitting the Earth soon are practically nil. A hit by such an asteroid is unlikely to hit Earth for hundreds of thousands of years. By then we’re probably sure to have something to at least alter the NEO’s course . . . if we’re still around, that is.
And because many asteroids heading for us end up bouncing off our atmosphere or principally burning up on entry, there aren’t many asteroids that can get through and maintain the size necessary to cause widespread damage.
The statistics on smaller hits are vague and subject to change, however. In the general press, too little coverage is given to the small asteroids which could conceivably cause terrible local destruction (e.g., to nearby coastal cities) but little worldwide impact, and which probably hit once every hundred years.
Also, our current best telescopes can hardly see the 100-meter asteroids because they’re so small; hence the vague statistics.
Still, “Near Earth Objects”–the term “near” is a pretty relative one, since it refers to space debris within a third of the distance to the sun–pose a threat to all nations.
For instance, a reasonably large asteroid of 200 meters (600 feet) in diameter crashing into the Atlantic Ocean could create a tsunami (a giant tidal wave) that would sink both Britain and the entire East Coast of the United States within minutes.
Up to the 1970s, there was actually little interest in asteroids, including NEOs. They were considered little more than low class astronomical objects. Indeed, the small comet which destroyed hundreds of square kilometers in remote Siberia in 1908 was an event little known to the general public.
And a small asteroid which skimmed the upper atmosphere in the 1970s, as detected by a US military satellite, received little publicity.Things began to change in the late 70s. A small but increasing number of astronomers interested in asteroids began to be concerned by the abundance of these objects passing close to the Earth. They instituted processes to catalog the asteroids accidentally seen on telescopic plates that had not previously been recorded.
Theoretical computer models revealed that the gravity of the planets caused a sizable number of asteroids from the Main Belt between Mars and Jupiter to cascade down into lower orbits, with many approaching the Earth. Further, a significant fraction of comets passing through the inner solar system would be diverted into orbits near Earth, due to gravitational encounters with the inner planets.
As a result of these discoveries, the estimated number of NEOs expanded by about 1000 times.
After that, some in the know say half-jokingly, even scientists and government officials began taking notice.
New telescope technology (CCDs) emerging around 1990 increased the discovery rate of all asteroids and eventually confirmed their abundance via solid statistical sampling rates. In fact, it is now estimated that there are about 300,000 Near-Earth Asteroids over 100 meters (about 300 feet) in diameter, and about 2,000 over 1 kilometer (3,000 feet) in diameter.

What does that mean to us? Well, if an asteroid at least 1 kilometer in size hit Earth, it would cause a dust cloud which would block out sunlight for at least a year and lead to a deep worldwide winter, exhausting food supplies. The latter is what caused the dinosaur extinction.
Many scientists estimate the impact by a single 1-km object could kill up to a quarter of our planet’s population.
Smaller hits–about 100-200-meters (300-600 feet), say–are far more common. Unfortunately for research, their effect doesn’t show up much in global geologic histories. It is estimated, however, that such hits have created many local tsunamis and brief climate changes in recorded history, without any understanding of their cause at the time.
Cruel, Cruel Fate
Luckily, Earth’s atmosphere gives protection against the vast majority of small asteroids. Asteroids hit the atmosphere at typical speeds in excess of 10 km/sec. Those whose entire orbits reside within the inner solar system hit with an average of about 20 km/sec – with exact relative speed depending upon their angle of approach – and with speeds over 50 km/sec common for small cometary objects making a pass from the outer solar system.
At this speed, they usually break up due to severe shock pressures, and burn up due to friction with the atmosphere. Think about it — 10 kilometers per second (6 miles per second) is bone-scrapingly fast — about 36,000 kilometers (22,000 miles) per hour.
For asteroids coming in at 20 km/sec, it’s generally thought that to penetrate the atmosphere and cause major damage by tsunami, an iron asteroid must be around 40 to 60 meters in diameter, and a stony asteroid 200 meters in diameter.
However, a stony asteroid 60 meters in diameter can cause significant damage by explosion due to atmospheric influence.
The exact damage inflicted by an asteroid or comet depends upon a number of factors — size, speed, composition of object, and whether it hits land or ocean.
For a land impact, it can be said that an object of roughly 75 meters (225 feet) diameter can probably destroy a city, a 160-meter (480-foot) object can destroy a large urban area, a 350-meter (1050-foot) object can destroy a small state, and a 700-meter (2,100-foot) object can destroy a small country.
Smaller objects can cause far more widespread damage with an ocean impact. The effects of an ocean impact are felt much further away than the effects of an air burst due to the more effective generation of water waves, and the fact that human populations and assets are largely concentrated in coastal cities.
For example, the earthquake-induced tsunami in Chile in 1960 produced waves in Hawaii 10,600 km away of height up to over 10 meters (30 feet), and up to 5 meters (15 feet) in Japan 17,000 km away with an average of 2 meters, causing heavy damages and loss of lives.
The damage caused by a tsunami is due not just by a heavy wall of water hitting things, but much more to the solid debris carried by the powerful, churning deep water wave as it hits the continental shelf–the solid debris rams and batters anything in its way.
The 1998 earthquake-induced tsunami in Papua New Guinea that wiped out coastal villages and killed uncounted thousands of people was only a few meters high.
If an asteroid hit the ocean, we could see a tsunami wave 100 times higher.Such a tsunami would cause unprecedented damage to now-developed low lying areas all along the U.S. east coast, and may totally submerge vast areas in Europe such as Holland and Denmark. A 100-meter (300-foot) tsunami would travel inland about 22 km (14 miles) and a 200 meter (600-foot) tsunami would travel inland about 55 km (34 miles).
How To Deflect An Asteroid
There simply is no good way to fight or run away from a killer asteroid. So what can we do?The trick to stopping a killer asteroid will be early, early detection, and quick, effective interplanetary action by the world’s governments.
Fine, but how can this be done? The Task Force on Potentially Hazardous Near Earth Objects writes:
“A number of possible mechanisms have been considered for deflecting or breaking up potentially hazardous Near Earth Objects; most would require the use of a spacecraft with some means of transferring energy or momentum to the object, for example by kinetic energy transfer (by heavy projectiles carried on the spacecraft or by causing a collision between asteroids), by chemical or nuclear explosives, or even by mounting “sails” on the object to harness the Sun’s radiation pressure.
“Some of these mechanisms are more realistic than others. [. . .]
“To try to destroy an asteroid or comet in space by a single explosive charge on or below its surface would risk breaking it uncontrollably into a number of large pieces which could still hit the Earth, doing even more damage.
“A more promising method would be to fly a spacecraft alongside the object, perhaps for months or years, nudging it in a controlled way from time to time with explosives or other means.
“This relatively gentle approach is particularly important because many asteroids and comets are held together only by their own very weak gravitational fields. The longer the time before impact, the more effective even a small nudge would be.”

There have been many scientific analyses on alternate ways to deal with a large object on a collision course with Earth.
The methods can be roughly split into two categories — destruction and deflection.
Destruction means breaking up the object into pieces small enough that none can penetrate the Earth’s atmosphere. For example, if done by nuclear detonation, the dispersion of the fragments would mean that most–but not all–pieces would miss the Earth.
The further away the detonation, the more dispersed the pieces by the time they arrive in Earth’s vicinity. As you can see, blowing up the object is actually a combination of destruction and deflection — the dispersion is a sort of deflection. The problem with destruction is the uncertainty of explosions. Success is risky.
Deflection means simply nudging the body so that it misses the Earth.
The further away the object is from Earth, the less we need to nudge it because the change in its trajectory adds up over time.If we detect an object on an impact trajectory, then we will need to make a decision on a method of planetary defense. The method chosen will depend upon the size of the object, how soon we can rendezvous with it, of what the object consists, the rotation rate of the object, its geometry, and any fractures in the object.
There would be considerable uncertainty regarding the composition of the object without a thorough on-site visit. For analysis purposes at this point in time, models have considered objects consisting primarily of ice, friable material, gravel, hard rock and pure metal.
Most proposed methods have been rejected due to risk and economic and/or technical feasibility in the near future. The remaining methods seriously considered to date include:
1.) Blowing it up with a nuclear bomb — This option is generally unfavored because it seems unlikely that it would completely break up most objects well enough, or assuredly move all pieces into a non-impact trajectory.
It’s still considered because it is economical and technically feasible — it might work, and it might be all we can do if given extremely short notice.
2.) Nudging it by nuclear bomb — This option detonates a nuclear bomb above the surface of a volatile asteroid or comet, causing intense heat at the surface in order to create gas jets which would thrust it away from Earth.
Another nuclear nudge option is to blow off a piece by targeting an existing natural fizzure, splitting it in two so that both dangerous pieces miss the Earth in a straddling way.
The drawback to both options is that both are often considered too ‘slick’ for scientists to be certain of their results. However, it very well might work, and it might be the most reasonable option if given very short notice.
3.) Nudging it by kinetic impact–This option simply has a sizable object strike the asteroid or comet at high speed in order to nudge it, possibly with an explosion upon impact to enhance the effect. This could work with small objects. The risk is that it will fragment the target and put a sizable chunk on a collision course with Earth.
4.) Thrusting the object–This precludes utilizing something on the asteroid that can be used to propel the object from its current trajectory. This option is attractive for very small objects whereby it would be feasible to send up to the asteroid a very high performance engine with the required fuel propellant for the move; for small to medium sized objects known to be rich in water, we could use it as fuel propellant in a thermal rocket.
Nuclear rockets (which use a small nuclear reactor to heat any kind of propellant) would be preferred for their simplicity and high performance.
Notably, solar ovens would not be preferred in the immediate future compared to a nuclear thermal rocket. Lack of simplicity, uneven performance, and the possible need to clean dirty mirrors argue against the solar device.
The advantage of thrusting is that the object won’t be fragmented, giving us more control. The disadvantage is that it won’t handle very large objects in a short time frame.
If an object were approaching Earth and we were given sufficient time, we could send out multiple missions using different techniques. If the first mission failed, a second mission could give it a shot. If an earlier mission fragments the asteroid, a later mission could deal with a fragment on a collision course with Earth. If it’s a large object, it could fragment into multiple threats.
But in all cases, the more advanced notice we have, the greater our chances for success. The experts agree that time is the critical element which can make all the difference in the world.
Tips For Surviving An Asteroid Impact
Surviving An Extinction Event Not Likely
Large asteroids are likely to lead to extinction events — the damage will be so catastrophic that most life on earth will simply perish. There’s no sense in trying to prepare to survive something to this extent — not unless you’re a government that has a lot of money to spend and can afford to build large, self-sustaining “bio-dome” bunkers deep underground and away from the point of impact.Then whoever lives in these underground “bio-domes” (perhaps small communities of people) would need to be prepared to stay underground for several years, perhaps relying on data from satellites in space as to what condition were now like on earth after the impact.
Temperatures will have dropped significantly around the planet, bringing in a new ice age, while killing most life on earth. As the years pass and the climate begins to change to safer levels once again for life, these people still alive deep underground could one day emerge to a completely different planet, and begin the painstaking task of re-populating the earth with whatever “life” they had managed to keep with them deep underground.
Better Odds: Surviving The Impact Of A Smaller Asteroid
While most people on earth would perish as the result of an asteroid impact of this size, what about a smaller asteroid?Since these are a lot more likely to take place, due to the large number of meteors in our solar system, we have a much better chance of surviving, especially if we don’t live anywhere near the impact or along the coast (should it strike in a nearby ocean).
To get an idea of how to survive, treat an asteroid impact a lot like a combination of a nuclear bomb (minus the fallout), catastrophic earthquake, and tsunami — all rolled into one.
Underground “Cold War” style bunkers would allow for families to seek shelter prior to an impact. For example, if NASA told us we had a few days until an asteroid strike (or possible strike), a person could hide-out in their bunker, ready to stay down there for several days, should an asteroid strike nearby.
For the majority who choose not to build a “Cold War” style bunker and instead chance the impact, it would be recommended that they head inland and to a higher elevation, in the days leading up to the asteroid collision. If the asteroid lands in the ocean, coastal regions (on continents on both sides of the ocean) are going to be flooded by a mega-tsunami.
Evacuation: Key To Surviving An Asteroid Collision
Plan for this event a lot like you would plan for the likelihood of a nuclear war. Have a secondary location (perhaps a cabin in the mountains or a friend or relative in a distant small town) that you can evacuate to.Since this is an asteroid you’re planning an evacuation for, and not a nuclear terrorist attack, you can first attempt to evacuate by car; hopefully state official will begin evacuations days in advance so that major cities being evacuated aren’t paralyzed by millions of fleeing residents.
Keep survival supplies on hand that you can pack in the trunk of your car, even on the roof of your car, and if possible also in a pull-behind trailer (such as extra gasoline, considering that gas stations may be empty of gas after a massive run for fuel by hundreds of thousands of people).
Pack a mountain bike for each member of your family, as well as a backpack that each person can carry on their back while riding a bike. Also consider “tow-behind” bicycle trailers for carrying goods. If for some reason you have to abandon your car, these mountain bikes will provide a secondary means of transportation. Or of course you can just hoof it on foot, which might be best anyway, as you’ll be able to carry more supplies with you (unless you’ve got that tow-behind trailer for your bikes).
A small asteroid impact will cause catastrophic damage, but it will be more localized, effecting a much smaller area than an “extinction event” causing asteroid.
After an evacuation, if an asteroid hits near the city that you’ve fled from, you may have no home or community to return to in the coming months, if it has been completely wiped off the map by the asteroid.
In that case, you’re technically a refugee.
If you have relatives or friends in distant places you haven’t talked to in years, consider warming up those relationships. Call and say hello more than once a year.
The more people who you know (and who like you) in distant places, the more possible locations you have for beginning a new life, should your home town ever be completely destroyed by an asteroid and you have to evacuate.
It’s either warm up those relationships with distant relatives or look forward to life in a FEMA Camp with a few hundred thousand other refugees who’ve also fled the region.
Additional Information: Asteroid Survival – How to Survive the 2036 Asteroid
Editors Note/Update: We used to have a separate article about the 2036 Asteroid – fortunately, it has been confirmed by scientists and experts that the 2036 Apophis Asteroid will not collide with earth. Therefore, the article about the 2036 asteroid no longer warrants it’s own post – however, there is still good information in that article that we didn’t want to just get rid of, so as a bonus to this article we’ve included that old article in it’s entirety below. It’s unedited and you should know that it is out of date – again, it’s been confirmed that the 2036 Asteroid will not impact Earth. But we think it’s worth a read in any case, so enjoy.
A large asteroid colliding with the Earth can cause immediate destruction resulting in mass extinction. An asteroid called the Apohis Asteroid may be on a collision course with Earth. Impact Date: 2036. Any way to survive?
Back in 2005, former NASA and Apollo astronaut, Russell Schweikart, urged the United States Congress to consider planning for the possibility of a hurdling piece of space mass – an asteroid, most likely – impacting with the Earth. He had a good reason for his request.
An asteroid named 2004 MN4, the “Apophis Asteroid” had been assigned the highest odds ever for a direct impact with our planet since we’d started documenting asteroids in near-Earth orbits. At first, observations guessed at a possible meeting date in the year 2029. Later it was determined that 2029 would probably go off without much problems from 2004 MN4.However, in 2036 we weren’t so sure.
Back in 2005, the chances for impact were noted to be only 1-in-10,000. Further, Schweikart also indicated that the asteroid would be out of sight from 2006 to 2012; but when it reappeared, the chances for collision would probably be set to zero.
Still, likely isn’t the same as definitely. Along with this, the world still needs to be concerned.
Will 2036 Asteroid Strike Earth? Current Estimates
Current guesstimates show that there is a 1-in-43,000 chance that the aforementioned asteroid could cross paths with our planet in 2036. Due to this, a group of scientists, engineers, and astronauts early this year called on the United Nations to take both the 2036 asteroid threat as well as global asteroid concerns more seriously.Meaning that the world should document an international plan to deflect, dismantle, or otherwise deal with asteroids right now before it was too late.
By the way, the steroid 2004 MN4 is now commonly referred to as Apophis.
“It’s not just Apophis we’re looking at. Every country is at risk. We need a set of general principles to deal with this issue,” Schweickart, a member of the Apollo 9 crew that orbited the Earth in the 1960’s, told a conference in San Francisco.
Obviously, to date, there is no plan to deal with an asteroid threat, U.S. or otherwise.
Schweikart has already presented an update to the U.N. Committee on Peaceful Uses of Outer Space. More specifically, he plans to discuss the need to develop a blueprint to deal with Apophis and other asteroid threats with them.
Along with this, The Association of Space Explorers, a group of former astronauts and cosmonauts, plans on holding a series of workshops in 2007 to further delve into the formulation of a possible plan with a target date of formal proposal to the U.N. in 2009.
Though this is all great news, a possible asteroid impact clearly isn’t. Further, a relatively recent congressional mandate for NASA to upgrade its ability to follow and track asteroids in the solar system is expected to further identify thousands of killer rocks in space.
So that brings up two questions: What would happen if one hit; and what can we do about it, if anything?
What To Expect From An Asteroid Impact
Let’s put it this way. Don’t expect anything good.For an example of the devastation that could be caused, we must look to the Earth’s hypothesized history. It is widely believed that a huge 10 kilometer asteroid set down in what is now the Yucatan Penninsula of Mexico about 65 million years ago. This collision formed the Chicxulub Crater that can be seen below the pennisula; an ancient crater approximately 180 kilometers wide. Now that’s the small stuff.
The impact from this event is also hypothesized to have wiped out the dinosaurs and destroyed the majority of plant and animal life beyond our enormous predecessors on the planet.
Said another way, the force from the asteroid’s impact would’ve been approximately 2,000,000 times more powerful than the most powerful explosive device ever detonated. Thus, it would have almost certainly served to unleash some of the largest megatsunami’s in the Earth’s history. Further, the emission of dust and particles likely shrouded the planet in darkness for many years. In essence, the effect would’ve been much like a nuclear winter.
Ouch.
That said, much smaller asteroids have shown the ability to be quite destructive on their own. For example, an asteroid that touched down in Winslow, Arizona roughly 50,000 years ago is hypothesized to have unleashed the equivalent energy of 500 Hiroshima bombs.
And that’s just asteroids. Try on comets for a moment. Back in 1908, a mere 50 meter piece of comet touched down in Siberia. Though no crater formed, the blast was the equivalent of 600 Hiroshima bombs and leveled everything- plants, trees, land: everything- for miles around.
Lucky it landed in such a relatively barren area.
By the way, Apophis is approximately 250 meters long.
Here’s The First Piece To The Puzzle: Detection.
Obviously, in order to protect ourselves, we need to know that an asteroid is coming. Most researchers seem to agree that for a relatively large asteroid (200-300 meters long) we’d have to know years in advance for any deflection strategy to work. Thus the reason why various researchers and citizen groups have requested that Congress (and now) the United Nations do a better job with detection. In fact, back in 1990 Congress authorized better detection of such events to NASA by writing that it was, “imperative that detection rate of Earth-orbit-crossing asteroids must be increased substantially and that means to destroy or alter the orbits. . . should be defined and agreed internationally.”That said, on January 7, 2002, a huge asteroid known as 2001 YB5 passed very close to our planet. The problem? We didn’t know about it until mere weeks before the occurrence.
Still, there have been huge improvements in national and international detection of NEO’s. Further, there have even been efforts made- such as with the Deep Impact Probe- to see what asteroids or comets are made of in the hopes that this might help us to determine a course of action to deal with them. Which, of course, leads to the following.
What Do We Do If We Find That An Asteroid Is Likely To Impact Earth?
First, if we know where one is going to roughly set down and haven’t already deflected, we should run!No, that’s not an attempt to be funny. Anyone and anything near an impact site would likely be obliterated, even if a smaller asteroid sets down. Thus, the first order of defense would be a coordinated evacuation.
However, once the asteroid sets down there is sure to be terrible damage. Thus, here are several deflection type strategies that have been discussed in the hopes that we can avoid such tragedy.
Nuclear Impact – Simply put, we could fire nuclear weapons at an asteroid approaching Earth in the hopes of vaporizing it. This is the most well-known and discussed theory to deal with an asteroid intent on doing harm.
However, there are clearly risks. First, we do not currently have any nuclear bombs capable of vaporizing an asteroid as large as one kilometer. However, theoretically we could- if sufficient materials exist- make a thermonuclear bomb that could do the job.
Of course, that’s only theoretically.
The second risk is a bit more problematic, however. What if the asteroid, as a result of being hit with a nuclear bomb, breaks into pieces? This would, in fact, make it even more difficult to evacuate and project the course of the pieces intent on doing Earth harm.
Third, rubble pile asteroids would be near impossible to vaporize in such a fashion due to their composition.
Nuclear Propulsion – This idea incorporates the possibility of detonating several nuclear blasts close to an asteroid in an attempt to alter its course without breaking it. Interestingly, in 1968 students at MIT used this strategy to prevent a hypothetical impact by the asteroid 1566 Icarus.
Though only hypothetical, the release of that information is certainly beneficial. However, detection of such an asteroid would need to be done well in advance for nuclear propulsion to work. This is the major drawback. The other, of course, being that if we detonate too close we might actually break the asteroid up.
Kinetic Impact – With this strategy of asteroid deflection, a spacecraft would be sent into space to collide with the near earth object ( NEO ) in question in an attempt to alter its course. This strategy is especially interesting because the European Space Agency is already studying a design to truly test this is space.
The mission has been called Don Quijotte.
In fact, it has already been demonstrated in hypothetical studies that a spacecraft weighing less than one ton could serve to alter Apophis’s course. However, we’d all probably like a little more reassurance than something termed, “hypothetical.”
Asteroid Gravitational Tractor – Another strategy that would require very early detection. However, it has a surplus of positives.
Edward T. Lu and Stanley Love- the grandfathers of this idea- believe that a large unmanned spacecraft hovering over an asteroid for a long period of time would serve to pull the asteroid from its devastating trajectory to a non threatening one through gravitational attraction alone.
This idea is gaining increasing attention as it doesn’t in any way risk the breaking apart of an asteroid. Further, this strategy could work regardless of the composition of the asteroid. Still, it would probably take several years to accomplish such a task. Thus, the need for very early detection.
Solar Energy – If we could harness enough solar energy over the course of years and direct it at an asteroid, this could serve to deflect its course. Though this idea hasn’t necessarily gotten as much press as the others, it could be quite effective.
Or at least so says H. Jay Melosh, the brains behind the idea.
In sum, there isn’t a lot we can do to protect ourselves just before or after an asteroid impact beyond evacuation of a targeted area and having enough resources (food, water, etc.) to try to last by our own means as the world around us attempts recovery.
In other words, a large asteroid impact would be damaging beyond anything we’ve ever known.
However, with early detection and the proper strategy we may be possible to avoid catastrophic destruction from a NEO. Further, we are making strides in regard to world cooperation and awareness that is already beginning to bear fruit.
Like everything else in this world- global warming, for example- that leaves us with the following question. Are we moving fast enough?

Our Top Posts About Natural Disasters
More Information about Low Probability Catastrophic Disasters
How to Survive a Comet Collision with Earth
How to Survive Mass Extinction


Why You Can Trust Us
Secrets of Survival has been around since 2002 (almost 20 years) and our survival knowledge is the real deal. We were writing and discussing survival and prepping before people even knew what the word “prepping” meant. We also preceded the trendiness of survival media nowadays… for example, we were arround before Bear Grylls filmed his first episode of Man vs Wild.Our contributors and writers over the years have included survival experts of all stripes – including a Green Beret Special Forces Medic, a former Navy SEAL, a leading survival instructor who’s been featured on National Geographic and PBS. Every article is either written or reviewed by someone who is an expert in either survivalism, prepping, or homesteading (or all three) and our goal is to be as practical and educational as possible.
While some of our writers and contributors use pseudonyms in order to protect their privacy (never a bad idea in these times where out of control surveillance is a growing problem), you can trust that everybody who gets to write for us has been vetted for their knowledge and passion when it comes to survival.
Click here to learn more about Secrets of Survival and our writers and contributors.
Leave a Reply